
Editing within and for
markup languages

Essential skills for modern editors
Paper presented at the IPEd national conference

Write | Edit | Index, 9 May 2015, Canberra

by Linda Nix
Golden Orb Creative

www.goldenorbcreative.com

Dr Linda Nix, BA Hons (English) PhD (History) Grad Dip Computing, is a professional editor
with 20 years of industry experience in editing and production for print and digital formats,
including hands-on experience with a range of markup languages and schemas. Her editing
expertise includes business, law, finance and accounting publications, trade non-fiction and
literary fiction. She has run her freelance business Golden Orb Creative since mid-2010 and
publishing imprint Lacuna since late 2012.

This document is a modified version of the presentation delivered at the Write | Edit | Index
conference, provided to IPEd for archiving purposes only, and is subject to copyright as below:

© 2015 Linda Kythe Nix. All rights reserved. No part of this publication may be reproduced,
stored in a retrievals system, or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, scanning or otherwise, except under the
terms of the Australian Copyright Act 1969, without the permission of the author.

All enquiries to general@goldenorbcreative.com

2 � � © 2015 Linda Kythe Nix

Why talk about markup languages?
For editors working in professional publishing, there is no escape from
markup languages. An article reviewing the use and range of markup
languages over the last 15 years interviewed a number of publishers and
publishing technology providers, all agreed on the importance of markup
languages in 2015:

no matter where the markup language is implemented in a
publisher’s workflow, it is definitely implemented

Marianne Calilhanna, Cenveo Publisher Services,
in Publishers Weekly, 24 April 2015

But there is a perception among publishers, and sometimes among editors
themselves, that the technology is too complicated for editors, that editors
are technophobes.

This paper argues that editors who are daunted by the alphabet soup of
markup languages – XML, XHTML, HTML, SGML – are more than capable
of understanding the principles of markup.

What do we mean by markup?
There are three kinds of markup.
1.	 Presentation markup describes how data should be displayed (font,

size, colour etc). On paper this is shown as:

3 � � © 2015 Linda Kythe Nix

2.	 Structural markup describes data in:
–– general structural terms, eg headings, paragraphs, quotes, lists
–– specific semantic terms, ie what kind of data it is: title, author name,

abstract heading, abstract, body heading, body paragraph, footnote,
reference.

3.	 Corrections markup describes changes to be made to data, and is
familiar to editors who use either standard proofreading symbols on
paper or Track Changes in MS Word to show corrections.

The example below, taken from the Style Guide 6th edn, shows a combination
of all three kinds of markup applied to hard copy. Presentation markup
is indicated by the blue arrows, where italic style is to be applied, while
structural markup is shown with the orange arrows, where paragraphs
and bullets are defined.

4 � � © 2015 Linda Kythe Nix

Markup languages (MLs)
Digital markup languages are defined in standards specified by the World
Wide Web Consortium (W3C.org). The main ones in use are:

•	 HTML: HyperText Markup Language – describes presentation (formatting).

•	 XML: eXtensible Markup Language – describes structure.

•	 XHTML: a subset of HTML structured to be compatible with XML or, in
other words, an XML version of HTML.

HTML and XHTML can be used with another W3C standard: CSS
(Cascading Style Sheet) which describes the formatting to be applied to
the structure defined in the XHTML or HTML.

XHTML and HTML are used for presenting text on web browsers, whether
it appears on a website or an application that uses web browser technology
such as intranets, ebooks and some apps.

XML is almost limitless in application and frequently defines the context
of XHTML documents.

XML for data transfer
The W3C defines XML as “a software- and hardware-independent tool for
carrying information”, noting that “XML does not ‘do’ anything”.

This is because XML files are plain text files that are:

•	 readable on any machine (hardware)

•	 readable by any app (software).

Other applications determine how XML coded data is read, stored, used
and displayed.

For these reasons, XML is de facto standard for data exchange on the
internet.

5 � � © 2015 Linda Kythe Nix

XML is everywhere
XML is used throughout the publishing industry to structure and transmit
data. Here are the main examples of XML standards in everyday use.

Scientific publishing XML schemas

•	 JATS (formerly NLM) for archiving and publishing scientific, technical
and medical (STM) journal articles.

•	 BITS for STM books.

•	 MathML for mathematics. There are two versions of MathML, a
presentation version to describe how an equation should be displayed,
and a semantic version to describe the operation of an equation.

Book publishing XML schemas

•	 EPUB for reflowable and fixed layout ebooks. EPUBs are packages that
include both XML and XHTML files, as well as other kinds of files.

•	 DAISY for talking books for visually-impaired readers.

•	 ONIX for book metadata.

Technical and reference publishing XML

•	 DITA for anything topic-based.

Microsoft Word XML

Since 2007, Microsoft Word uses its own XML schema – the ‘x’ in .docx
stands for XML. Every editor who uses Word is using XML, even if they
don’t know it.

HTML is everywhere too
As mentioned, HTML is the standard for web browser display and is
used in browser apps, namely Chrome, Firefox, Safari, Internet Explorer;
ebook apps, eg Bluefire, iBooks, Kindle, Kobo, Nook; and browser-based
interfaces to other systems such as databases and content management
systems (CMS), eg website and blog software.

6 � � © 2015 Linda Kythe Nix

XML and XHTML tags
Structural markup is applied through “tags”. XML tags are semantic, ie they
have meaning and are readily understood by English-speaking humans.
XHTML tags are structural and look more like code than English, but they
are very limited in number and easy to learn. Tags are indicated by angled
brackets. Following are some examples of both XML and XHTML tags.

<title>This is an XML tag for a title element.</title>

<title date="08052015">This is an XML tag for the title
element with an attribute “date” containing the value of

today’s date in DDMMYYYY format.</title>

<h1>This is a top heading level tag in XHTML.</h1>

<h1 class="title">This is the same XHTML heading tag with
the class “title”.</h1>

Example

In the example below, the same text is given an XML tag in the first column,
and an HTML tag in the third column. Thus the title of the document is
tagged semantically as <title> in XML and structurally as the first level
heading <h1> in XHTML.

7 � � © 2015 Linda Kythe Nix

Data mapping
Semantic XML tags are readily mapped to other markup or data structures.
A common way such mapping occurs is to allow XML tags to define XHTML
classes, so that rich semantic structures are not limited by XHTML’s smaller
tag set.

The example below shows how this might work. The XHTML tag <h1> is
used twice, once with the class "title" and once with the class "chapter".
The visual presentation of each class is defined differently in the CSS.

Thus in an ebook of this content, the title page will use <h1> for its first
heading, and each chapter will also use <h1> for the first heading, but
the two classes of <h1> will look distinct. Both structural and semantic
integrity are retained.

Editing for XML and XHTML
Although the previous examples have shown the tags or coding, editors
working in digital markup languages rarely need to do actual hand coding.
Rather than learn coding (unless they want to), editors need to:

•	 focus on the content and structure, not design

•	 understand how design will be applied (eg through CSS)

•	 understand XML or XHTML context of their editing environmentp[repare
“clean” files with correct markup or ready for conversion to markup
formats – “clean” means properly styled and correctly tagged (with
opening and closing tags).

8 � � © 2015 Linda Kythe Nix

Editing environments 1: Microsoft Word
MS Word is still the most commonly used authoring and editing tool in
business and publishing.

To work with markup languages, all an editor needs to do is use Word
templates and styles – both paragraph and character styles. This is
something an editor should already be doing as a matter of best practice.

A properly styled Word file can be imported into layout software (eg
InDesign) or into HTML or XML publishing systems.

There are also special Word add-ins for XML, such as MathType for MathML
and Inera eXtyles for STM journal and book XML.

Word’s default styles and XHTML

Word’s default styles correspond to XHTML tags:

Heading 1 = <h1>		 Normal = <p>

Heading 2 = <h2>		 Quote = <blockquote>

Heading 3 = <h3>		 Emphasis = (italics)

Heading 4 = <h4>		 Strong = (bold)

Heading 5 = <h5>		 Bodybullet = (unordered list)

Heading 6 = <h6>		 List paragraph = (ordered list)

Applying Word’s default styles to text means it is marked up as XHTML
without entering any code at all.

Word styles and XML

Word files are packages of XML files, some of which are XHTML files. The
structure of a Word file is defined according to definitions in “Word-XML”,
and any Word styles become Word-XML elements. Word-XML is rarely
used on its own. Instead, Word-XML elements are mapped to elements in
other XML schemas, or to style names in other programs (eg InDesign).

When Word is used for import into an XML system, style names are not
Word’s default styles but new styles with meaningful (semantic) names.

9 � � © 2015 Linda Kythe Nix

Importantly, the names must be appropriate to content structure, and not
style names that describe the formatting.

In the example shown below, a journal article prepared in Word uses style
names that correspond to the element tags in the JATS DTD. The first
heading is not given the default style Heading 1 but a style called Article
Title. When this context is converted from Word to JATS, the style name
will be mapped to the tag <article-title>.

Using Word for markup languages

•	 Use paragraph and character styles for all formatting (good practice
anyway).

•	 Only use Word’s default styles if the document will be used for HTML
purposes, such as websites.

•	 Otherwise use semantic, meaningful style names to facilitate correct
style mapping to the correct XML elements or XHTML classes. That
means knowing your XML context:

–– Styles for journal articles use JATS elements.
–– Styles for user manuals use DITA elements.

•	 Avoid fonts and glyph issues by using standard fonts eg Arial, Times
New Roman.

10 � � © 2015 Linda Kythe Nix

Editing environments 2: Browser-based CMS
CMS stands for “content management system” and refers to a system in
which content (eg text, image, video, audio files) is stored in a database and
managed via an interface – usually browser-based. “Managed” can mean
any action such as creating, editing, deleting, arranging and publishing.

CMSs are used for websites, Intranets and publishing to file formats
including PDF, EPUB, XML, XHTML and XML.

Examples of website CMS are Wordpress, Joomla and Drupal. Email
examples are Constant Contact and Mailchimp.

CMS text editors

Most CMS text editors provide a tool panel similar to MS Word’s tools.
They also present a WYSIWYG view by default, and an option to view the
code markup. However, they do not usually allow access to CSS code for
you to change the presentation within the CMS.

In a good text editor, you don’t need to know HTML at all to apply structural
markup. For example, the Joomla default text editor provides a drop-down
list of all the structural tags for headings and paragraphs (shown below).

Other CMS text editors have a very limited toolset. For example, the
Wordpress default text editor has no heading styles. The only way to apply
different levels of headings to your text is to enter the code view and
manually insert the heading tags.

This is where using Word styles in your source document can really help.

11 � � © 2015 Linda Kythe Nix

Importing Word into CMS using default styles

A Word document formatted with Word’s default paragraph and character
styles and copied and pasted into a Joomla or Wordpress page will retain
its structural markup. The visual styling comes from the stylesheet (CSS)
stored in the system.

For websites using Joomla or Wordpress, all the editing can be done in
Word by an editor, and the content then copied into the CMS text editor by
a web manager, with no further manipulation needed.

Word to CMS: custom styles

The same principles can be applied using custom (rather than default)
styles, as long as the CSS has defined the presentation for classes with the
same names.

Editing environments 3: Specialised tools (Sigil)
Sigil is a free dedicated authoring, editing and validation tool for ebooks
conforming to the EPUB 2 and EPUB 3 standards.

Sigil provides:

•	 a WYSIWYG authoring and editing environment (much like a web CMS)

•	 code view, including style sheet (CSS) access

•	 metadata editing tools

•	 an internal validation tool.

There is not much tech support but it is a friendly learning environment
– ideal for getting accustomed to working with XHTML markup and CSS
for ebooks.

The screenshots on the next page show a chapter in an ebook in the WYSIWIG
view, the code view, and the CSS file that defines the presentation of the
text. For example, the heading “Chapter 1: See You If You Get Back” is
tagged in the code view as <h1 class="chapter">, and in the CSS you
can see the coding for the element h1.chapter {

12 � � © 2015 Linda Kythe Nix

Editors and style sheets
Editors are not expected to do the style sheet coding (design) but should:

•	 understand how HTML markup works with CSS

•	 be able to investigate the code and troubleshoot incorrect markup

•	 know enough to communicate more precise instructions to designers
and programmers. Compare the following instructions:

–– “make chapter titles bigger” vs “make <h1> font size three times
bigger than <p> font size”.

–– “underline all proper names and make them blue” vs “create a new
span.name class with color: blue and text-decoration: underline”.

13 � � © 2015 Linda Kythe Nix

ML-based publishing systems
Markup language-based publishing systems fall into two main categories:
1.	 All-inclusive software, eg InfoGrid Pacific, that:

–– handles all or most XML / XHTML data tasks (editing, validation,
export to production formats)

–– is supported by a single software developer (external vendor or in-
house IT department).

2.	 A series of software programs, eg Typefi, each handling a distinct
subset of the tasks, that are linked to a greater or lesser degree via XML
and are supported by several developers (external or in-house) who
may be working together or in isolation.

Whichever system is in use, the question an editor needs to ask is: at what
point do Word files enter the system?

Advantages of ML systems (why publishers love them)

•	 Streamlined publishing processes.

•	 Markup takes care of formatting.

•	 One content source for multiple formats.

•	 Less duplication of content, with less unnecessary variation.

•	 Content is exchanged or transmitted, not copied and pasted or re-entered.

•	 Improved accuracy and efficiency.

Problems with ML systems (why some people hate them)

•	 Poor understanding of editing and publishing requirements among IT
staff and vendors.

•	 Poor understanding of technology and XML capabilities among system
users.

•	 “Out of the box” systems too inflexible.

•	 Custom systems too complex and expensive.

•	 Unrealistic and overambitious projects – expectation that XML will solve
everything.

14 � � © 2015 Linda Kythe Nix

Evaluating new publishing systems

Editors involved in implementing a markup language-based publishing
system need to look closely at several items.
1.	 Content, especially structure and industry requirements.
2.	 Processes for authoring, editing, proofing, correction, production.
3.	 Primary purpose for the system, eg to facilitate XML file exchange,

deposit, and archiving, or to gain production efficiencies.
4.	 Impact (positive and negative) on staff, budget, IT systems etc.
5.	 Support: IT help, editorial training, troubleshooting; installation only

or ongoing; in-house or email only.

Whenever new systems that impact editorial workflows are being
implemented, it is vital that editors are involved. That means editors must
know enough to be part of the conversation.

Editing skills: “knowing enough”
Editors need particular skills to work effectively in modern editorial and
production environments. An editor needs to:

•	 apply on-screen markup – the method will depend on the editing tools
in use, but applying Word styles is essential

•	 edit content independent of presentation

•	 interpret content according to structure

•	 understand markup and validation processes

•	 understand production outputs (formats) and processes, eg style sheets

•	 proof formatted content and identify markup (code) issues by looking at
the source code or communicating the problem to IT or design staff

•	 know XML schemas relevant to their domain.

15 � � © 2015 Linda Kythe Nix

Myths about editors and markup
“Tagging is not an editor’s job”

Markup is a core editorial task, whether on paper or screen. Most markup
is done in WYSIWYG systems and is as simple as applying styles.

“Editors have to become typesetters”

In most markup language-based systems, typesetting is usually automated
to a greater or lesser degree.

Designers create templates and style sheets, and programmers write the
code that applies these to marked-up text.

The editor works on the content and applies markup to the content files
(often as styles) for import into the typesetting applications. This is not
typesetting, any more than marking up hard copy was.

Editors do need to understand the typesetting contexts in which they work
– just like they always have.

Practical workshop for editors
Editors wishing to gain hands-on experience with using markup in
applications like Word and Sigil can enrol in the workshop Editing within
and for markup languages (formerly known as Decoding XML: a practical guide
for editors).

The next workshop will be run for the Society of Editors (NSW) in Sydney
in November 2015.

To arrange other times or a tailored version of the workshop for in-house
editorial training, contact Linda Nix at Golden Orb Creative, via email
linda@goldenorbcreative.com or mobile 0417 041 744.

